GoSouth

South African, Credible and Current

  • HOME
  • NEWS AND FEATURES
    • News & Opinion
    • Covid-19
    • Cape Independence
  • FINANCE
  • SCIENCE
  • INTERESTING
  • NATURE & ANIMAL TALK
  • LIFESTYLE ART
  • HISTORY
    • Cape South Peninsula

SpaceX launch: here’s the rocket science

Gareth Dorrian, Post Doctoral Research Fellow in Space Science, University of Birmingham and Ian Whittaker, Lecturer in Physics, Nottingham Trent University

Two NASA astronauts, Robert Behnken and Douglas Hurley, have finally made history by travelling to the International Space Station in a privately funded spacecraft, SpaceX’s Falcon 9 rocket and Crew Dragon capsule. The launch was initially due to take place on May 27 but had to be be postponed due to bad weather. It launched at 3.22pm EST on May 30.

The astronauts took off lying on their backs in the seats, and facing in the direction of travel to reduce the stress of high acceleration on their bodies. Launching from Kennedy Space Centre, the spacecraft travelled out over the Atlantic, turning to travel in a direction that matches the ISS orbit.

The first rocket section separated at just over two minutes. The main dragon capsule separated from the second stage burn a few minutes later and is continuing on its journey. All being well, the Dragon spacecraft will rendezvous with the ISS about 24 hours after launch.

Space mission launches and landings are the most critical parts. However, Space X has conducted many tests, including 27 drops of the parachute landing system. It has also managed an emergency separation of the Dragon capsule from the rocket. In the event of a failed rocket launch, eight engines would lift the capsule containing the astronauts up into the air and away from the rocket, with parachutes eventually helping it to land. The Falcon 9 rocket has made 83 successful launches.

Docking and return

The space station has an orbital velocity of 7.7km per second. The Earth’s rotation carries launch sites under a straight flight path of the ISS, with each instance providing a “launch window”.

ISS orbit. (Author provided)

To intercept the ISS, the capsule must match the station’s speed, altitude and inclination, and it must do it at the correct time such that the two spacecraft find themselves in close proximity to each other. The difference in velocity between the ISS and the Dragon capsule must then be near to zero at the point where the orbits of the two spacecraft intersect.

Once these conditions are met, the Dragon capsule must manoeuvre to the ISS docking port, using a series of small control thrusters arranged around the spacecraft. This is due to be done automatically by a computer, however the astronauts can control this manoeuvre manually if needed.

As you can see in the figure below, manoeuvring involves “translation control” as indicated by green arrows – moving left/right, up/down, forward/back. The yellow arrows show “attitude control” – rolling clockwise/anti-clockwise, pitching up/down, and yawing left/right.

How to manoeuver a spacecraft. (Author provided)

This is complicated by Newton’s first law of motion – that any object at rest or in motion will continue to be so unless acted upon by an external force. That means any manoeuvre, such as a roll to the right, will continue indefinitely in the absence of air resistance to provide an external force until it is counteracted by firing thrusters in the opposite direction.

So now that you have a grasp of orbital manoeuvring, why not have a go yourself? This simulator, provided by Space X, allows you to try and pilot the Dragon capsule to the ISS docking port.

The astronauts will return to Earth when a new set are ready to take their place, or at NASA’s discretion. NASA are already planning the first fully operational flight of crew Dragon, with four astronauts, although a launch date for that has not yet been announced and will undoubtedly depend on the outcome of this demonstration flight.

New era for spaceflight

The launch puts SpaceX firmly ahead of the other commercial ventures looking at providing crewed space launches. This includes both Boeing’s Starliner, which first launched last year but was uncrewed, and Sierra Nevada’s Dream Chaser which is planned to be tested with cargo during a trip to the ISS next year.

The ability of the commercial sector to send astronauts to the ISS is an important step toward further human exploration, including establishing a human presence at the Moon, and ultimately, Mars.

With companies competing, however, an open question remains whether safety could at some point be compromised to gain a commercial edge. There is no suggestion this has happened so far, but any crewed mission which failed due to a fault stemming from economic concerns would have serious legal ramifications.

In a similar way to modern aircraft legislation, a set of space safety standards and regulations will need to be put in place sooner rather than later. For commercial lunar and beyond missions we also have to ensure that any spacecraft does not contaminate the location they are visiting with germs from Earth.

With more nations and companies developing plans for lunar missions, there are obvious advantages in international cooperation and finding cost efficient launch methods. This is not least because it’s not as dependent on the whim of elected governments for direction, which can change completely from one administration to the next.

So for us scientists looking to expand our knowledge of space, it is a very exciting moment.The Conversation

This article is republished from The Conversation under a Creative Commons license. Read the original article.

This is the first time in human history @NASA_Astronauts have entered the @Space_Station from a commercially-made spacecraft. @AstroBehnken and @Astro_Doug have finally arrived to the orbiting laboratory in @SpaceX's Dragon Endeavour spacecraft. pic.twitter.com/3t9Ogtpik4

— NASA (@NASA) May 31, 2020

  • Share
  • Twitter
  • Facebook
  • WhatsApp
  • Email
  • LinkedIn
  • Skype
  • Telegram

Related Posts

  • The Science of Hearing

    Your ears are extraordinary organs. They pick up all the sounds around you and then…

  • The Science of Attraction

    Women from places as different as the jungles of Amazonia, the salons of Paris, and…

  • Defective Science: debunking the myth of ballistic fingerprinting

    by Gideon Joubert, PARATUS After years of research, Dr. David Klatzow’s monumental work regarding ballistic…

  • The strange life of the world's slowest mammal, the SLOTH

      Sloths have been on this planet for over 40 million years. What's the secret…

  • The Science behind 'Puppy Dog Eyes'

    The raised inner eyebrow movement in dogs is driven by a muscle which doesn’t consistently…

Contact US

  • Email
  • Facebook
  • Twitter

Search this Website

HELP HOTLINE 0800 029 999

previous arrow
next arrow
Slider

Most Recent Posts

  • Johnson & Johnson vaccine looks excellent for SA in first published detailed analysis
    The Johnson & Johnson vaccine is effective against […]
  • Headaches: three tips from a neuroscientist on how to get rid of them
      Amanda Ellison, Professor of Neuroscience, Durham […]
  • South African astronomy has a long, rich history of discovery – and promising future
    Ian Glass, Associate Research Astronomer, South […]
  • ‘No valid or sound reason’ for Zuma’s failure to appear before the inquiry. ZUMA’s reply
    The commission will make an application to the […]
  • CIAG calls for public consultation on W.Cape secession in the wake of SONA 2021
    Phil Craig of the Cape Independence Advocacy Group […]
  • Transparent wood is coming, and it could make an energy-efficient alternative to glass
    Steve Eichhorn, Professor of Materials Science and […]
  • Risk of severe COVID established early in infection – new study
    Damage to the body’s organs is not caused by the virus […]
  • Market Turmoil: Manias and what to do?
    By Jonathan Katzenellenbogen -3 February, 2021 An army […]
  • Behind the mantras of Cape independence
    By Phil Craig of the Cape Independence Advocacy Group […]
  • Covid-19: Ivermectin obsession is dangerous
    By Nathan Geffen, GroundUp – 29 January 2021 The […]

NUMBERS TO NOTE

Gender-Based Violence Command Centre: 0800 428 428
Western Cape Women’s Shelter Movement: 082 903 8739

Police: 10111

Childline: 0861 322 322
Child Welfare SA: 0861 424 453

South African National Human Trafficking Hotline: 0800 222 777

Copyright © 2021 — GoSouth • All rights reserved • Privacy Policy • Disclaimer • Terms & Conditions • Cookie Policy

loading Cancel
Post was not sent - check your email addresses!
Email check failed, please try again
Sorry, your blog cannot share posts by email.